SET THEORY HOMEWORK 6

Due Friday, May 5.

Problem 1. If $V \subset W$ are two models of set theory and $V \models "D$ is club in κ ", then $W \models "D$ is club in κ ".

Problem 2. Let κ be a regular uncountable cardinal and \mathbb{P} be a κ -c.c. poset, *i.e.* every antichain has size less than κ .

(a) Suppose that \dot{C} is a \mathbb{P} - name such that $1 \Vdash ``\dot{C}$ is a club subset of κ ", and define $D = \{\alpha < \kappa \mid 1 \Vdash \alpha \in \dot{C}\}$. Show that D is a club a subset κ . (Note that D is in the ground model.)

(b) Show that \mathbb{P} preserves stationary subsets of κ , i.e. if $S \subset \kappa$ is stationary in the ground model, then S remains stationary in any \mathbb{P} -generic extension.

Problem 3. Let κ be a regular uncountable cardinal and \mathbb{P} be a < κ -closed poset. Show that \mathbb{P} preserves stationary subsets of κ .

Hint: If $S \subset \kappa$ is stationary and $p \Vdash \dot{C}$ is a club subset of κ ", show there is a sequence in the ground model $\langle p_{\alpha}, \gamma_{\alpha} \mid \alpha < \kappa \rangle$, such that:

- $\langle p_{\alpha} \mid \alpha < \kappa \rangle$ is a decreasing sequence below p,
- $\langle \gamma_{\alpha} \mid \alpha < \kappa \rangle$ is a club in κ ,
- each $p_{\alpha} \Vdash \gamma_{\alpha} \in \dot{C}$.

Then use stationarity of S in the ground model.

Problem 4. Let $S \subset \omega_1$ be a stationary set. Define $\mathbb{P} := \{p \subset S \mid p \text{ is closed and bounded}\}$, and set $p \leq q$ if p end extends q i.e. for some α , $p \cap \alpha = q$. Suppose that $T := S \setminus \omega_1$ is also stationary. Let G be a \mathbb{P} -generic filter. Show that in V[G], T is nonstationary.

The above is an example of a forcing that destroys a stationary set, without collapsing cardinals (the cardinal preservation takes an argument). On the other hand, you cannot destroy a club set (see problem 1).

Problem 5. Suppose that, in V, S is a stationary subset of ω_1 and \mathbb{P} is a forcing that destroys the stationarity of S. Show that there are ω_1 -many dense subsets of \mathbb{P} , such that no \mathbb{P} -filter $G \in V$ meets them.

The above problem is why Martin's Maximum is in a sense the optimal generalization of MA.